Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109591, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38632988

RESUMO

Targeting cancer metabolism to limit cellular energy and metabolite production is an attractive therapeutic approach. Here, we developed analogs of the bisbiguanide, alexidine, to target lung cancer cell metabolism and assess a structure-activity relationship (SAR). The SAR led to the identification of two analogs, AX-4 and AX-7, that limit cell growth via G1/G0 cell-cycle arrest and are tolerated in vivo with favorable pharmacokinetics. Mechanistic evaluation revealed that AX-4 and AX-7 induce potent mitochondrial defects; mitochondrial cristae were deformed and the mitochondrial membrane potential was depolarized. Additionally, cell metabolism was rewired, as indicated by reduced oxygen consumption and mitochondrial ATP production, with an increase in extracellular lactate. Importantly, AX-4 and AX-7 impacted overall cell behavior, as these compounds reduced collective cell invasion. Taken together, our study establishes a class of bisbiguanides as effective mitochondria and cell invasion disrupters, and proposes bisbiguanides as promising approaches to limiting cancer metastasis.

2.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37079375

RESUMO

The intake of dietary phosphate far exceeds recommended levels; however, the long-term health consequences remain relatively unknown. Here, the chronic physiological response to sustained elevated and reduced dietary phosphate consumption was investigated in mice. Although serum phosphate levels were brought into homeostatic balance, the prolonged intake of a high-phosphate diet dramatically and negatively impacted bone volume; generated a sustained increase in the phosphate responsive circulating factors FGF23, PTH, osteopontin and osteocalcin; and produced a chronic low-grade inflammatory state in the BM, marked by increased numbers of T cells expressing IL-17a, RANKL, and TNF-α. In contrast, a low-phosphate diet preserved trabecular bone while increasing cortical bone volume over time, and it reduced inflammatory T cell populations. Cell-based studies identified a direct response of T cells to elevated extracellular phosphate. Neutralizing antibodies against proosteoclastic cytokines RANKL, TNF-α, and IL-17a blunted the high-phosphate diet-induced bone loss identifying bone resorption as a regulatory mechanism. Collectively, this study illuminates that habitual consumption of a high-phosphate diet in mice induces chronic inflammation in bone, even in the absence of elevated serum phosphate. Furthermore, the study supports the concept that a reduced phosphate diet may be a simple yet effective strategy to reduce inflammation and improve bone health during aging.


Assuntos
Reabsorção Óssea , Fósforo na Dieta , Camundongos , Animais , Interleucina-17 , Fator de Necrose Tumoral alfa , Linfócitos T , Citocinas , Inflamação , Fosfatos
3.
Biochem Pharmacol ; 183: 114305, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129806

RESUMO

Phosphorus, often in the form of inorganic phosphate (Pi), is critical to cellular function on many levels; it is required as an integral component of kinase signaling, in the formation and function of DNA and lipids, and energy metabolism in the form of ATP. Accordingly, crucial aspects of cell mitosis - such as DNA synthesis and ATP energy generation - elevate the cellular requirement for Pi, with rapidly dividing cells consuming increased levels. Mechanisms to sense, respond, acquire, accumulate, and potentially seek Pi have evolved to support highly proliferative cellular states such as injury and malignant transformation. As such, manipulating Pi availability to target rapidly dividing cells presents a novel strategy to reduce or prevent unrestrained cell growth. Currently, limited knowledge exists regarding how modulating Pi consumption by pre-cancerous cells might influence the initiation of aberrant growth during malignant transformation, and if reducing the bioavailability or suppressing Pi consumption by malignant cells could alter tumorigenesis. The concept of targeting Pi-regulated pathways and/or consumption by pre-cancerous or tumor cells represents a novel approach to cancer prevention and control, although current data remains insufficient as to rigorously assess the therapeutic value and physiological relevance of this strategy. With this review, we present a critical evaluation of the paradox of how an element critical to essential cellular functions can, when available in excess, influence and promote a cancer phenotype. Further, we conjecture how Pi manipulation could be utilized as a therapeutic intervention, either systemically or at the cell level, to ultimately suppress or treat cancer initiation and/or progression.


Assuntos
Carcinogênese/induzido quimicamente , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/induzido quimicamente , Fosfatos/efeitos adversos , Fósforo na Dieta/efeitos adversos , Animais , Carcinogênese/patologia , Proliferação de Células/fisiologia , Transformação Celular Neoplásica/patologia , Humanos , Neoplasias/induzido quimicamente , Neoplasias/patologia , Fosfatos/administração & dosagem , Fósforo na Dieta/administração & dosagem
4.
Sci Adv ; 6(30): eaaz6197, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832657

RESUMO

Tumor heterogeneity drives disease progression, treatment resistance, and patient relapse, yet remains largely underexplored in invasion and metastasis. Here, we investigated heterogeneity within collective cancer invasion by integrating DNA methylation and gene expression analysis in rare purified lung cancer leader and follower cells. Our results showed global DNA methylation rewiring in leader cells and revealed the filopodial motor MYO10 as a critical gene at the intersection of epigenetic heterogeneity and three-dimensional (3D) collective invasion. We further identified JAG1 signaling as a previously unknown upstream activator of MYO10 expression in leader cells. Using live-cell imaging, we found that MYO10 drives filopodial persistence necessary for micropatterning extracellular fibronectin into linear tracks at the edge of 3D collective invasion exclusively in leaders. Our data fit a model where epigenetic heterogeneity and JAG1 signaling jointly drive collective cancer invasion through MYO10 up-regulation in epigenetically permissive leader cells, which induces filopodia dynamics necessary for linearized fibronectin micropatterning.

5.
Oncotarget ; 8(21): 34586-34600, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28410221

RESUMO

Aberrant activation of Rho GTPase Rac1 has been observed in various tumor types, including pancreatic cancer. Rac1 activates multiple signaling pathways that lead to uncontrolled proliferation, invasion and metastasis. Thus, inhibition of Rac1 activity is a viable therapeutic strategy for proliferative disorders such as cancer. Here we identified small molecule inhibitors that target the nucleotide-binding site of Rac1 through in silico screening. Follow up in vitro studies demonstrated that two compounds blocked active Rac1 from binding to its effector PAK1. Fluorescence polarization studies indicate that these compounds target the nucleotide-binding site of Rac1. In cells, both compounds blocked Rac1 binding to its effector PAK1 following EGF-induced Rac1 activation in a dose-dependent manner, while showing no inhibition of the closely related Cdc42 and RhoA activity. Furthermore, functional studies indicate that both compounds reduced cell proliferation and migration in a dose-dependent manner in multiple pancreatic cancer cell lines. Additionally, the two compounds suppressed the clonogenic survival of pancreatic cancer cells, while they had no effect on the survival of normal pancreatic ductal cells. These compounds do not share the core structure of the known Rac1 inhibitors and could serve as additional lead compounds to target pancreatic cancers with high Rac1 activity.


Assuntos
Neoplasias Pancreáticas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Quinases Ativadas por p21/metabolismo , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Ligação Proteica/efeitos dos fármacos , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac1 de Ligação ao GTP/química , Proteína rhoA de Ligação ao GTP/metabolismo
6.
J Med Chem ; 59(10): 5121-7, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27077228

RESUMO

Design, synthesis, and evaluation of α-methylene-γ-butyrolactone analogues and their evaluation as anticancer agents is described. SAR identified a spirocyclic analogue 19 that inhibited TNFα-induced NF-κB activity, cancer cell growth and tumor growth in an ovarian cancer model. A second iteration of synthesis and screening identified 29 which inhibited cancer cell growth with low-µM potency. Our data suggest that an isatin-derived spirocyclic α-methylene-γ-butyrolactone is a suitable core for optimization to identify novel anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Isatina/farmacologia , Compostos de Espiro/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Isatina/química , Estrutura Molecular , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Compostos de Espiro/síntese química , Compostos de Espiro/química , Relação Estrutura-Atividade , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
7.
Anal Biochem ; 440(1): 71-7, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23747283

RESUMO

Deubiquitinases (DUBs) play an important role in regulating the ubiquitin landscape of proteins. The DUB AMSH (associated molecule with the SH3 domain of STAM) has been shown to be involved in regulating the ubiquitin-dependent down-regulation of activated cell surface receptors via the endolysosomal degradative pathway. Therefore, small molecule AMSH inhibitors will be useful chemical probes to study the effect of AMSH DUB activity on cell surface receptor degradation. Currently, there are no known selective inhibitors of AMSH or high-throughput compatible assays for their identification. We report the development and optimization of a novel fluorescence resonance energy transfer (FRET)-based add-and-read AMSH DUB assay in a 384-well format. In this format, the optimal temperature for a high-throughput screen (HTS) was determined to be 30°C, the assay tolerates 5% dimethyl sulfoxide (DMSO), and it has a Z-score of 0.71, indicating HTS compatibility. The assay was used to show that AMSH selectively cleaves Lys63-linked diubiquitin over Lys48- and Lys11-linked diubiquitin. The IC50 value of the nonspecific small molecule DUB inhibitor N-ethylmaleimide was 16.2±3.2 µM and can be used as a qualitative positive control for the screen. We conclude that this assay is high-throughput compatible and can be used to identify novel small molecule inhibitors of AMSH.


Assuntos
Inibidores Enzimáticos/análise , Transferência Ressonante de Energia de Fluorescência/métodos , Ensaios de Triagem em Larga Escala/métodos , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina/análise , Fluorescência
8.
Clin Cancer Res ; 19(8): 2025-35, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23444213

RESUMO

PURPOSE: The presence of TNF-α in approximately 50% of surgically resected tumors suggests that the canonical NF-κB and the mTOR pathways are activated. Inhibitor of IκB kinase ß (IKKß) acts as the signaling node that regulates transcription via the p-IκBα/NF-κB axis and regulates translation via the mTOR/p-S6K/p-eIF4EBP axis. A kinome screen identified a quinoxaline urea analog 13-197 as an IKKß inhibitor. We hypothesized that targeting the NF-κB and mTOR pathways with 13-197 will be effective in malignancies driven by these pathways. EXPERIMENTAL DESIGN: Retrospective clinical and preclinical studies in pancreas cancers have implicated NF-κB. We examined the effects of 13-197 on the downstream targets of the NF-κB and mTOR pathways in pancreatic cancer cells, pharmacokinetics, toxicity and tumor growth, and metastases in vivo. RESULTS: 13-197 inhibited the kinase activity of IKKß in vitro and TNF-α-mediated NF-κB transcription in cells with low-µmol/L potency. 13-197 inhibited the phosphorylation of IκBα, S6K, and eIF4EBP, induced G1 arrest, and downregulated the expression of antiapoptotic proteins in pancreatic cancer cells. Prolonged administration of 13-197 did not induce granulocytosis and protected mice from lipopolysaccharide (LPS)-induced death. Results also show that 13-197 is orally available with extensive distribution to peripheral tissues and inhibited tumor growth and metastasis in an orthotopic pancreatic cancer model without any detectable toxicity. CONCLUSION: These results suggest that 13-197 targets IKKß and thereby inhibits mTOR and NF-κB pathways. Oral availability along with in vivo efficacy without obvious toxicities makes this quinoxaline urea chemotype a viable cancer therapeutic.


Assuntos
Antineoplásicos/farmacologia , Quinase I-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Proteínas Reguladoras de Apoptose/metabolismo , Área Sob a Curva , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Quinase I-kappa B/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Compostos de Fenilureia/química , Compostos de Fenilureia/farmacocinética , Compostos de Fenilureia/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Quinoxalinas/química , Quinoxalinas/farmacocinética , Quinoxalinas/farmacologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Proc Natl Acad Sci U S A ; 108(38): 15780-5, 2011 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-21900609

RESUMO

Carbon monoxide (CO) is a product of haem metabolism and organisms must evolve strategies to prevent endogenous CO poisoning of haemoproteins. We show that energy costs associated with conformational changes play a key role in preventing irreversible CO binding. AxCYTcp is a member of a family of haem proteins that form stable 5c-NO and 6c-CO complexes but do not form O(2) complexes. Structure of the AxCYTcp-CO complex at 1.25 Å resolution shows that CO binds in two conformations moderated by the extent of displacement of the distal residue Leu16 toward the haem 7-propionate. The presence of two CO conformations is confirmed by cryogenic resonance Raman data. The preferred linear Fe-C-O arrangement (170 ± 8°) is accompanied by a flip of the propionate from the distal to proximal face of the haem. In the second conformation, the Fe-C-O unit is bent (158 ± 8°) with no flip of propionate. The energetic cost of the CO-induced Leu-propionate movements is reflected in a 600 mV (57.9 kJ mol(-1)) decrease in haem potential, a value in good agreement with density functional theory calculations. Substitution of Leu by Ala or Gly (structures determined at 1.03 and 1.04 Å resolutions) resulted in a haem site that binds CO in the linear mode only and where no significant change in redox potential is observed. Remarkably, these variants were isolated as ferrous 6c-CO complexes, attributable to the observed eight orders of magnitude increase in affinity for CO, including an approximately 10,000-fold decrease in the rate of dissociation. These new findings have wide implications for preventing CO poisoning of gas-binding haem proteins.


Assuntos
Proteínas de Bactérias/química , Monóxido de Carbono/química , Citocromos c'/química , Conformação Proteica , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação/genética , Monóxido de Carbono/metabolismo , Intoxicação por Monóxido de Carbono/metabolismo , Intoxicação por Monóxido de Carbono/prevenção & controle , Cristalização , Cristalografia por Raios X , Citocromos c'/genética , Citocromos c'/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Heme/química , Heme/metabolismo , Humanos , Cinética , Modelos Químicos , Modelos Moleculares , Mutação , Oxirredução , Ligação Proteica , Análise Espectral Raman
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...